

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

asyncio-foundationdb [https://github.com/amirouche/asyncio-foundationdb/]

early draft

asyncio drivers for foundationdb tested with CPython 3.9 and PyPy 3.7

[image: _images/photo-1544383835-bda2bc66a55d.jpg]Library Database [https://unsplash.com/photos/lRoX0shwjUQ]

Table of Content

	Getting started

	ChangeLog

	v0.10.x

	import found

	from found import bstore

	from found import nstore

	from found import eavstore

	from found import pstore

Getting started

pip install asyncio-foundationdb

import found

async def get(tx, key):
 out = await found.get(tx, key)

async def set(tx, key, value):
 return found.set(tx, key, value)

db = await found.open()
out = await found.transactional(db, get, b'hello')
assert out is None

await found.transactional(db, set, b'hello', b'world')
out = await found.transactional(db, get, b'hello')
assert out == b'world'

ChangeLog

v0.10.x

	Almost full rewrite

	Remove hooks for the time being

	Port Generic Tuple Store aka. nstore

	Add blob store aka. bstore

	Add Entity-Attribute-Value store aka. eavstore

	Add inverted index store aka. pstore

import found

found.BaseFoundException

All found exceptions inherit that class.

found.FoundException

Exception raised when there is an error foundationdb client driver, or
foundationdb server side.

async found.open(cluster_file=None)

Open database.

Coroutine that will open a connection with the cluster specified in
the file cluster_file. If cluster_file is not provided the default
is /etc/foundationdb/fdb.cluster. Returns a database object.

async found.transactional(db, func, *args, snapshot=False, **kwargs)

Operate a transaction for func.

Coroutine that will operate a transaction against db for func. If
snapshot=True then the transaction is read-only. func will receive
an appropriate transaction object as first argument, then args, then
kwargs. Because of errors transactional might run func several
times, hence func should be idempotent.

async found.get(tx, key)

Get the value associated with key.

Coroutine that will fetch the value associated with key inside the
database associated with tx. key must be bytes. In case of
success, returns bytes. Otherwise, if there is no value associated
with key, returns the object None.

found.set(tx, key, value)

Set key to value.

In the database associated with tx, associate key with
value. Both key and value must be bytes.

found.pack(tuple)

Serialize python objects tuple into bytes.

found.pack_with_versionstamp(tuple)

Serialize python objects tuple into bytes. tuple may contain
found.Versionstamp objects.

found.unpack(bytes)

Deserialize bytes into python objects.

found.Versionstamp(...)

FIXME.

found.clear(tx, key, other=None)

Remove key or keys.

In the database associated with tx, clear the specified key or
range of keys.

key and other if provided must be bytes.

If other=None, then clear the association that might exists with
key. Otherwise, if other is provided, found.clear will remove
any association between key and other but not the association with
other if any (that is other is excluded from the range).

async found.query(tx, key, other, *, limit=0, mode=STREAMING_MODE_ITERATOR)

Fetch key-value pairs.

In the database associated with tx, generate at most limit
key-value pairs inside the specified range, with the specified order.

If key < other then found.query generates key-value pairs in
lexicographic order. Otherwise, if key > other then found.query
generates key-value pairs in reverse lexicographic order, that is
starting at other until key.

If limit=0, then found.query generates all key-value pairs in the
specified bounds. Otherwise if limit > 0 then, it generates at most
limit pairs.

The keyword mode can be one the following constant:

	found.STREAMING_MODE_WANT_ALL

	found.STREAMING_MODE_ITERATOR

	found.STREAMING_MODE_EXACT

	found.STREAMING_MODE_SMALL

	found.STREAMING_MODE_MEDIUM

	found.STREAMING_MODE_LARGE

	found.STREAMING_MODE_SERIAL

found.next_prefix(key)

Returns the immediatly next byte sequence that is not prefix of key.

found.lt(key, offset=0)

found.lte(key, offset=0)

found.gt(key, offset=0)

found.gte(key, offset=0)

async found.read_version(tx)

found.set_read_version(tx, version)

found.add(tx, key, param)

found.bit_and(tx, key, param)

found.bit_or(tx, key, param)

found.bit_xor(tx, key, param)

found.max(tx, key, param)

found.byte_max(tx, key, param)

found.min(tx, key, param)

found.byte_min(tx, key, param)

found.set_versionstamped_key(tx, key, param)

found.set_versionstamped_value(tx, key, param)

from found import bstore

bstore.BStoreException

Exception specific to bstore.

bstore.make(name, prefix)

Handle over a bstore called name with prefix.

async bstore.get_or_create(tx, bstore, blob)

bstore.get(tx, bstore, uid)

from found import nstore

nstore.NStoreException

Exception specific to nstore.

nstore.make(name, prefix, n)

Create a handle over a nstore called name with prefix and n
columns.

The argument name should be a string, it is really meant to ease
debugging. prefix should be a tuple that can be packed with
found.pack. Last but not least, n is the number of columns in the
returned tuple store (or, if you prefer, the number of tuple items).

It is preferable to store the returned value.

nstore.add(tx, nstore, *items, *, value=b'')

In the database associated with tx, as part of nstore, add
items associated with value.

nstore.remove(tx, nstore, *items)

In the database associated with tx, as part of nstore, remove
items and the associated value.

async nstore.get(tx, nstore, *items)

In the database associated with tx, as part of nstore, get the
value associated with items. If there is no such items in nstore,
returns None.

nstore.var(name)

Create a variable called name for use with nstore.query.

async nstore.query(tx, nstore, pattern, *patterns)

In the database associated with tx, as part of nstore, generate
mappings that match pattern and patterns. Both pattern and
patterns may contain nstore.var that will be replaced with
matching values in the generic tuple store.

from found import eavstore

eavstore.make(name, prefix)

Create a handle over an eavstore called name with prefix.

The argument name should be a string, it is really meant to ease
debugging. prefix should be a tuple that can be packed with
found.pack.

eavstore.create(tx, eavstore, dict)

Store a dictionary.

In the database associated with tx, as part of eavstore, save
dict and returns its unique identifier.

async eavstore.get(tx, eavstore, uid)

Fetch a dictionary.

In the database associated with tx, as part of eavstore, retrieve
the dictionary associated with uid. If there is no such dictionary,
returns an empty dictionary.

eavstore.remove(tx, eavstore, uid)

Clear a dictionary.

In the database associated with tx, as part of eavstore, remove
the dictionary associated with uid.

eavstore.update(tx, eavstore, uid, dict)

Update a dictionary.

In the database associated with tx, as part of eavstore, replace
the dictionary associated with uid with dict.

async eavstore.query(tx, eavstore, key, value)

Lookup dictionaries according to sppecification.

In the database associated with tx, as part of eavstore, generates
unique identifier for dictionaries that have key equal to value.

from found import pstore

pstore.PStoreException

Exception specific to pstore.

pstore.make(name, prefix, pool)

A handle over a pstore called name with prefix, that will use
pool.

async pstore.index(tx, store, docuid, counter)

Associates docuid with counter.

Coroutine that associates the identifier docuid with the dict-like
counter inside the database associated with tx at store for
later retriaval with pstore.search.

counter must be a dict-like mapping string to integers bigger than
zero.

async pstore.search(tx, store, keywords, limit)

Return a sorted list of at most limit documents matching keywords.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/photo-1544383835-bda2bc66a55d.jpg

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

